Multi VirAnalyzer ISDS220A(B) Model User Guide # InstruStar Electronic Technology 2013-8-1 # contents | 1.Introduction | .1 | |---|-----| | 2.Feature Description ······ | ٠1 | | 3.Software Installation | •3 | | 3.1 Installation package | ٠3 | | 3.2 Hardware connection ······ | 3 | | 4.Basic operation ······ | ٠3 | | 4.1 Mouse Drag······ | 3 | | 4.2 Mouse Measure | • 4 | | 4.3 Zoom ······ | • 5 | | 5.Oscilloscope / Spectrum analyzer | •5 | | 5.1 Basic control······ | 6 | | 5.2 Waveform analysis ······ | 7 | | 5.3 File operations | 8 | | 6.Filter Design(QFilter)······ | •9 | | 6.1 FIR filter design - window method ······ | 9 | | 6.2 FIR filter design - frequency sampling method | 10 | | 6.3 IIR filter design ······ | 11 | | 6.4 data and bmp save······ | 11 | | 7.DDS | 12 | | 7 Saranna | 10 | # **PC SYSTEM REQUIREMENTS** - Windows XP, Windows 7 - Pentium or higer processor - USB2.0 High speed port. - 32MB RAM - 125MB hard disk space ## 1.Introduction ISDS220A/ISDS220B dual-channel digital oscilloscope, with "low-cost, high-performance" as the design goals. well-designed bandwidth of 60M, 200M sampling rate, 2 channels, alternating support X, Y and XY alternating pattern of two-channel virtual oscilloscope, spectrum analyzer. Meanwhile, ISDS220B has DDS and Sweep function. DDS support 5 kinds of waveform output, Sine wave can output up to 20M. The device communicate with the PC via high speed USB2.0. | | Digital oscilloscop | Spectrum analyzers | DDS | Sweep | |----------|---------------------|--------------------|--------------|----------| | ISDS220A | \checkmark | $\sqrt{}$ | | | | ISDS220B | $\sqrt{}$ | $\sqrt{}$ | \checkmark | √ | ## 2. Feature Description | Digital oscilloscope | | | |----------------------|--|--| | Channels | 2 | | | Impedance | 1MΩ 25pF | | | Coupling | AC/DC | | | Vertical resolution | 8Bit | | | Gain range | -16V ~ 16V (probe X1)
-160V ~ 160V (probe X10) | | | Vertical accuracy | ±3% | | | Timebase range | 1ns-20s | | | Input Protection | Diode, 50Vpk | | | Autoset | Yes(10Hz to 60MHz) | | | Trigger Mode | Auto, Normal and Signal | | | Trigger Type | No. Rising edge. Falling edge. Rising edge or Falling edge | | | Trigger level | Yes | | | Trigger Source | CH1, CH2 | | | Buffer Size | 512KB/CH | | | Bandwidth | 60MHz | | | Max sample | 200MS/s | | | Vertical mode | CH1, CH2, ADD, SUB, MUL | | | Display Mode | X、Y-T 和 X-Y | | | measurements | Yes | | | Wave save | Osc(Private), Excel and Bmp | | | Spectrum analyzers | | | |--------------------|--|--| | Channels | 2 | | | Bandwidth | 60MHz | | | Algorithm | FFT(18 windows), correlation, power spectrum | | | FFT points | 8-1048576/CHN | | | FFT measure | Harmonic(1-7)、SNR、SINAD、ENOB、THD、SFDR | | | Filter processing | FIR filter supports arbitrary range of frequency sampling method, and Rectangle, bartlett, triangular, cosine, hanning, bartlett_hanning, hamming, blackman, blackman_Harris, tukey, Nuttall, FlatTop, Bohman, Parzen, Lanczos, kaiser, gaussand dolph_chebyshev, window method design. IIR filter support "Butterworth", "Chebyshev I", "Chebyshev II", "Elliptic" type of filter design | | | DDS(Only ISDS220B) | | | |---------------------------------|--|--| | Wave | Sine, Square(Duty circle variable), Triangle, Up | | | | Sawtooth, Down Sawtooth | | | Amplitude | ≥9Vp-p(no load) | | | Impedance | 200Ω±10% | | | Offset | ±2.5V | | | Frequency range | 1Hz ~ 20MHz(Sine), 1Hz ~ 2MHz(Others) | | | Frequency resolution | 1Hz | | | Frequency steadiness | ±1×10 ⁻³ | | | Frequency precision | ±5×10 ⁻³ | | | Triangular wave linearity | ≥98% (1Hz~10kHz) | | | Sine wave distortion | ≤0.8% (1kHz) | | | Square wave rising/falling time | ≤100ns | | | Square wave duty circle | 1%~99% | | | SWEEP | | | | Sweep range | Fs 到 Fe | | | Sweep time range | 0.1 ~10 s | | | Amplitude | 0.5Vp-p ~ 10Vp-p | | | Sweep(Only ISDS220B) | | |------------------------------------|-------------------------------------| | Sweep Style Linear Sweep Log Sweep | | | Linear Sweep Range | 1Hz-20MHz, Min 1Hz step | | Log Sweep Range | 1Hz-10MHz, 1,10,100Logarithmic step | measurements, canmanual calibration, the specific reference oscilloscope instructions. ## 3. Software Installation ## 1.1 Installation package Install software package. The package will install the software and drivers. ## 1.2 Hardware connection The USB and computer connections, pop-up shown the interface, select "Install the software automatically"; If the installation is successful, the following pop-up interface. #### Note: - 1. If driver installation fails, please manually install the driver. Drive directory in the installation directory ".\Driver" inside. - 2. If you manually install the driver fails, see the directory ".\Software User Guide \English\the solution of driver can not install\driver solution.doc " of the CD. **4.Basic operation**Software support Mouse Drag, Mouse Measure, Area Select, Figure 4.1 mouse opetation Sample Points, Horizontal Zoom, Horizontal Move, Vertical Zoom, Vertical Move and Area Zoom operation, easy and convenient to view information and analysis. ## 4.1 Mouse Drag Press the left mouse button in the middle of the interface, you can move the mouse to drag the waveform; both the left and right side of the vertical scale corresponds to the location, press the left mouse button, move the mouse to drag and drop the waveform vertically. #### **4.2 Mouse Measure** Figure 4.1,the first icon "mouse tracking", click on the icon to start trackingthe mouse, as long as you want to track the curve, press the left mouse button, the system will correspond to the points of horizontal and vertical coordinates, displayed on the lower left corner. (Figure 4.2). Measuring line, divided into two states, "selected" and "non-selected". Selected, scroll the mouse wheel to fine-tune the measuring line; non-selected, scroll wheel, zoom waveform. Figure 4.2 mouse measure Figure 4.1,The second icon "mouse measurement", click on the icon to start the mouse measurement. Click in the waveform to be measured interface position curve, and then move the mouse. System will measure the two-point difference between the horizontal and vertical (Figure 4.3). Measuring line, divided into two states, "selected" and "non-selected". Selected, scroll the mouse wheel to fine-tune the measuring line; non-selected, scroll wheel, zoom waveform. Figure 4.3 mouse measurement system will be measured, the curve corresponding to the mouse click position and display the corresponding left and right level of difference (Figure 4.4). Figure 4.4 mouse X-axis measurement Figure 4.1, The fourth icon "mouse Y-axis measurement", click on the icon to start the mouse Y-axis measurements. Click in the waveform to measure the interface of the two peaks of the vertical center, the system will be measured, corresponding to the mouse click position the top and bottom curve, and shows the corresponding vertical difference (Figure 4.5). Figure 4.5 mouse Y-axis measurement #### **4.3 Zoom** When the mouse enters the middle of the drawing area, click the left mouse button or scroll wheel to zoom the waveform; clicking the right mouse button or scroll wheel narrow waveform. When the mouse enters the left and right sides of the vertical scale of the area, click the left mouse button or scroll wheel to zoom the waveform; clicking the right mouse button or scroll wheel narrow waveform. ## 5.Oscilloscope / Spectrum analyzer USB connected to the computer, the software will automatically detect and establish a connection with hardware. The right side of the digital storage oscilloscopes workspace "property set" of the top will be a ISDS220A(1.0)(N)/ISDS220B(1.0)(N)of the drop-down option, N will be different with different computers, the same used to distinguish between multiple devices. Select this option to pop-up interface in Figure 5.1. ## 5.1 Basic control ## **5.1.1 Channel Control** "CH1" and "CH2" is used to start and shut down the corresponding oscilloscope channel. #### 5.1.2 Auto and Pause "Auto" to turn on automatic detection of the oscilloscope; "pause" the data collected can be suspended. ## 5.1.3 Capture frame "Capture" button, click it to start capturing the frame; Drop-down box to select consecutive frames capture frame, which can be from 1 to 100. After capture, you can "data record" tab inside, find the time to date txt text file named, for example, 10-5 +14-13-2 +1. txt that this is at 14:00 on October 5 13 minutes, 2 seconds grab the first frame of data. Just double-click or right-click "Import Analysis" will be able to load the data analysis. ## 5.1.4 Trigger conditions The conditions used to detect specific signal acquisition. #### 5.1.5 Fixed sample For some specific requirements, you can use a fixed sampling rate feature, select the sampling rate, click on the "fixed sampling rate" check box, it starts a fixed sampling rate. ## **5.1.7 Probe** When you change the oscilloscope probe above × 1, × 10, the interface needs to select the appropriate probe multiples, so that we can correct the reality of the waveform peak. Figure 5.1 property set ## 5.1.8 Interpolation Support automatic and manual interpolation, after selection will be based on a given frequency interpolation, the frequency of the waveform when the acquisition is greater than the frequency interpolation, the system will start the interpolation function. ## 5.1.9 Calibration As the computer USB power supply voltage is different, so the factory calibration of the offset may have to recalibrate it. The measured waveform of the bias and the biasinput signal source, enter "offset calibration (mV)" there can be. Factory when there may be slight amplification bias can be adjusted by the amplitude calibration. ## 5.2 Waveform analysis ## 5.2.1 Views Management Figure 5.2, click the "View" button, a view of the build menu will pop up. Select the appropriate menu item, you can create a new view, for the analysis of the waveform display. The "Waveform View" is mainly used for the input waveform, the waveform synthesis, and their filtered waveform display; "Lissajous View" is mainly used for display two channels of frequency ratio generated Lissajous graphics; "correlation / spectrum view "mainly used for analysis, and filtering directly after the input waveformof the Amplitude, phase, logarithmic Amplitude, self-power spectrum, self-power spectrum of the number, self-related and cross-correlation. "Waveform View", "Lissajous View" and "correlation/ spectrum view" view analysis of property, select the appropriate view, the corresponding "wave processing" properties window will display the corresponding view of the analysis of properties. #### 5.2.2 Wave view Select any of the "wave view", the "waveform process" attribute which will display the contents of Figure 5.3. ## 5.2.2.1 Time-domain analysis "Data Source" to select the displayed waveform view, can be "Wave", "wave add", "Wave Sub(CH1-CH2)", "Wave Sub(CH2-CH1)" and "Wave Mult". #### 5.2.2.2 Filtering "Filter Control" is used to enable / disable the filtering function. "Filter selection" is used to select the filter to using filtering fo CH1, CH2 and Mix wave, which is designed by QFilter software. #### 5.2.3 correlation/spectrum view Select any of the "correlation/ spectrum view", the "waveform process" attribute will display the contents of Figure 5.4. #### 5.2.3.1 Hor-Axis Log coordinate system "Hor-Axis Log coordinate system" is used to control the X-axis is logarithmic coordinate system to display. ## 5.2.3.2 Time-domain analysis "Data Source" to select the displayed waveform view, can be "Wave", "wave add", "Wave Sub(CH1-CH2)", "Wave Sub(CH2-CH1)" and "Wave Mult". ## 5.2.3.3 correlation/spectrum analysis "Analysis Type" is used to select the features to analyze, can be "Amplitude", "phase", "log Amplitude", Figure 5.2 views mange Figure 5.3 Wave view Figure 5.4 correlation/ spectrum view "self-power spectrum", "log self-power spectrum", "cross-power spectrum", "log cross-power spectrum", "auto-correlation" and "cross-correlation". "window type" is used to select the signal window, can be "rectangular window", "triangular window", "Hanning window", "Blackman window" and so on. "Accuracy" is used to set the analysis accuracy. #### **5.2.3.4 Filtering** "Filter Control" is used to enable / disable the filtering function. "Filter selection" is used to select the filter to using filtering fo CH1, CH2 and Mix wave, which is designed by QFilter software. ## **5.2.4 Alternating X and X-Y (**Lissajous**)** Select any of the "Lissajous view", the "wave process" attribute which will display the contents of Figure 5.5. ## 5.2.4.1 Lissajous "Data length", used to set the length of the data to draw Lissajous. Check box "Lissajous wave" is used to set whether to draw Lissajous graphics; Check box "wave" is used to set whether to draw X alternating wave. Figure 5.5 Lissajous view Figure 5.6 data record ## 5.3 File operations The saved file can be find in the "data record" tab, as shown in Figure 5.6. #### 5.3.1 Capturing frame file capture frames in the file access, can be found here. Double-click the file as long as you can reload, view waveforms and analysis. ## 5.3.2 Waveform storage Oscilloscope to capture waveforms, with the area selection tool, select the save area, then right click mouse, "to save the selected area", you can save for the waveform. Figure 5.6 area save Figure 5.7 filter files ## **5.3.3 Filter Files** Start "digital storage oscilloscope," after the right side of the workspace, select the bottom of the "filter" filter will open the corresponding document management properties. Click on any files, it will pop up a properties box below, shows the properties of the corresponding filter. ## **6.Filter Design(QFilter)** In the system tray menu, select "Filter Design (QFilter)", will start the filter designsoftware, started the interface shown in Figure 6.1. Figure 6.1 QFilter interface ## 6.1 FIR filter design - window method Click the toolbar "FIR" button in the pop-up menu, select "Window method", will pop up a dialog box in the dialog box, fill in the desired design of the filter types and their parameters. When choosing and click "design" will appear corresponding to the filter "amplitude(dB)", "amplitude", "phase", "log Amplitude", "step response", "zero-pole" and "group delay" seven images. Figure 6.2 for the FIR hanning window length of 74 design results map. Figure 6.2 FIR hanning window length ## 6.2 FIR filter design - frequency sampling method Click the toolbar "FIR" button, in the pop-up menu select "frequency sampling", will pop up a dialog box, shown in Figure 6.3. Respectively, according to need to fill the order, the normalized frequency and the corresponding point of the range, plus choosing the type of window, and then click Design. Design was completed and results will appear curve. Design is complete, click OK, there will be corresponding to the filter "amplitude(dB)", "amplitude", "phase", "log Amplitude", "step response", "zero-pole" and "group delay" seven images. Figure 6.4 is the design of FIR frequency sampling results of Fig. Figure 6.3 frequency sample design interface Figure 6.4 FIR frequency sample ## 6.3 IIR filter design Click on the toolbar "IIR" button will pop up a dialog box in the dialog box, fill in the desired design of the filter types and their parameters. And FIR as fill parameters each time, and move the InstruStar Electronic Technology 10 http://www.instrustar.com/ mouse, the software will be completed to determine the parameters are correct, if there is an error, the bottom of the dialog box will display, where the parameter is incorrect; when all parameters are right after the "order of the budget" will be given in the design of indicators to meet the kind of order of the filter. Of course, you can also to choose the filter type, can be "Butterworth", "Chebyshev I", "Chebyshev II" and "ellipse" and its order number. When choosing and click "design"will appear corresponding to the filter "amplitude(dB)", "amplitude", "phase", "log Amplitude", "step response", "zero-pole" and "group delay" seven images. Figure 6.5 is 7 order IIR elliptical design result. ## 6.4 data and bmp save When designing a good filter, you can save the data and images. Click on the toolbar or menu item "Save" dialog box will pop up to save, in the "Save as type" drop-down combo box, select the corresponding txt, fdd would be able to filter H (z) coefficients stored, select the bmp they can save the images (Figure 6.6). For txt format, in the dialog box below, "the output coefficient formatting", you can specify to save H (z) or pole-zero; can specify the output of H (z) pole-zero coefficients and in what kind of format, you can also choose whether the parameters and then multiplied by a factor of the output. For example: Select% 0.0f, and multiplied by the factor given is 4096, then the output will be multiplied by the coefficient will be designed after the integer part of 4096, there is no fractional part. For fdd format, the filter can be designed for each parameter are preserved for future to open or for a given waveform filtering. For the bmp format, you can "bmp save" and select "Save all images" check box, so one will be able to save seven images. Figure 6.5 IIR 7 order elliptical Figure 6.6 save dialog ## 7. DDS (0n1y ISDS220B) As open after the DDS source interface, the waveform is a waveform and frequency of the output set; amplitude and bias need to use the USB port next two knobs to adjust. Sweep a sweep according to the parameters set output waveform. Figure 7.1 DDS ## 8. Sweep (Only ISDS220B) Sweep need the help of a two-channel oscilloscope to calculate the DDS sine wave signal into the amplitude ratio over the test board so that the board under test can be measured in different frequency signal attenuation. Therefore, the need to connect the DDS as a 8.1 channel of the oscilloscope. Figure 8.1 Sweep wiring diagram